

CALIFORNIA STATE SCIENCE FAIR 2003 PROJECT SUMMARY

Name(s)

Daniel R. Brownlee

Project Number

Project Title

Dihedral Angles and Their Effect on Flight

Objectives/Goals

Abstract

This experiment was designed to determine if the dihedral angle of a plane's wing affects a plane's length of flight. The dihedral angle is the angle of a plane's wing to a horizontal plane.

Methods/Materials

The test plane was created from a balsa wood kit, an arrow shaft and threaded rods. A hinge fitting was constructed by having a one inch dowel rod with a hole in it slid over a threaded rod on the fuselage. The hinge fitting was used to shift the dihedral angle of the wings. A launch system was created to insure each test was launched consistently. Fifty tests were completed for the following dihedral angels: 00, 150, 300, -150, and -300. The data was recorded from where the nose hit each time. The tests were completed in an inside facility that was not affected by the outside elements.

Results

The -30o anhedral flew the farthest on average. The -15o flew the shortest on average. However, this angle flew with the most stability.

Conclusions/Discussion

The experimenter believes the -30o anhedral flew the furthest because a cushion of air formed under the plane which did not allow the normal vortexes to form and kept the plane aloft longer.

Summary Statement

This experiment was designed to determine if the dihedral angle of a plane's wing affects a plane's length of flight.

Help Received

Father helped launch and build airplane. Mother helped to type report. Used Gym at Mission Valley Church of the Nazerene.