

CALIFORNIA STATE SCIENCE FAIR 2003 PROJECT SUMMARY

Name(s)

Ryan J. Liljestrom

Project Number S1217

Project Title

Numerical Fulcrums and Prime of the Form k^2+1

Objectives/Goals

Abstract

It has not yet been proven in mathematics if there exists an infinite number of primes of the form k^2+1 , where k is a positive integer. With the exception of the integer two, any prime of the form k^2+1 must also be of the form $4n^2+1$, because k^2+1 must be odd so k must be even and $k^2+1=(2n)^2+1=4n^2+1$. **Results**

This project deals with a special type of integers called "numerical fulcrums" and proves that the list of all positive integers which are not numerical fulcrums are integers n which yield a prime number in the function $4n^{2+1}$.

Conclusions/Discussion

Numerical fulcrums could quite possibly be used some day to help solve the conjecture that there exist an infinite number of primes of the form k^2+1 .

Summary Statement

Results from this project prove that numerical fulcrums, defined by the student, are related to the set of prime numbers of the form k^{2+1}

Help Received