| Name(s) |
| :--- | :--- |
| Ryan J. Liljestrom |

Project Title

Numerical Fulcrums and Prime of the Form $\mathbf{k}^{\wedge} \mathbf{2 + 1}$

Objectives/Goals

Abstract
It has not yet been proven in mathematics if there exists an infinite number of primes of the form $\mathrm{k}^{\wedge} 2+1$, where k is a positive integer. With the exception of the integer two, any prime of the form $\mathrm{k}^{\wedge} 2+1$ must also be of the form $4 n^{\wedge} 2+1$, because $k^{\wedge} 2+1$ must be odd so k must be even and $k^{\wedge} 2+1=(2 n)^{\wedge} 2+1=4 n^{\wedge} 2+1$.

Results

This project deals with a special type of integers called "numerical fulcrums" and proves that the list of all positive integers which are not numerical fulcrums are integers n which yield a prime number in the function $4 n^{\wedge} 2+1$.
Conclusions/Discussion
Numerical fulcrums could quite possibly be used some day to help solve the conjecture that there exist an infinite number of primes of the form $\mathrm{k}^{\wedge} 2+1$.

Summary Statement

Results from this project prove that numerical fulcrums, defined by the student, are related to the set of prime numbers of the form $\mathrm{k}^{\wedge} 2+1$

Help Received

