

CALIFORNIA STATE SCIENCE FAIR 2004 PROJECT SUMMARY

Name(s)

Chris D. Woodward

Project Number

J1929

Project Title

The Freezing Tolerance of Mytilus edulis (Black mussel) and Perna canaliculus (Green mussel)

Objectives/Goals

Abstract

Cryobiologists are trying to develop procedures for freezing and thawing organs for transplant. Mussels produce a cryoprotectant to help them withstand cold temperatures. This study was conducted to determine if a mussel's cryoprotectant would raise its survival rate after freezing. I believe 100% of the mussels would survive freezing.

Methods/Materials

Phase I included 9 black mussels and 6 green mussels frozen in three batches in sea water at - 5. Phase II included 7 black mussels and 2 green mussels frozen in two batches without sea water. In both Phases the mussels were frozen for at least 5 hours. The mussels were then thawed, probed, and dissected to determine if they survived. 5 criteria were used to determine the mussels' vitality.

Results

In Phase I, the survival rate for the black mussels was 56% and for the green mussels was 83%. In Phase II, the survival rate for the black mussels was 86% and the green mussels was 0%. Overall 69% of the black mussels survived and 63% of the green mussels survived.

Conclusions/Discussion

The survival rate of the mussels was over 50% but less than the 100% I hypthesized. More experimentation would be helpful to determine the longest period a mussel could be frozen and survive. Utilizing a high-powered microscope, the actual change in the cell's structure during and after freezing could be observed.

Summary Statement

Black and green mussels were frozen, thawed and then checked for vitality to determine presence and effectiveness of cryoprotectants.

Help Received

Mother helped type report. Father cut open the mussels remaining after I cut my hand.