CALIFORNIA STATE SCIENCE FAIR 2004 PROJECT SUMMARY

Name(s)	Project Number
Timothy L. Uy	S1220
Project Title Algorithm Performance on the Satisfiability Problem	
Objectives/Goals	the Sectioficiality mechan
The objective was the find an effective method to solve Methods/Materials	e the Satisfiability problem.
Methods	
1. Write the Clause Check subprogram	
2. Write a program to generate random problems with t	the ability to regenerate problems
3. Write the Genetic algorithm	
4. Write the GSAT algorithm	
5. Write the Simulated Annealing algorithm	
6. Write the Exhaustive algorithm7. Make sure the algorithms run properly	
8. Run a 100 clauses 10 variables problem with the Ger	netic algorithm GSAT, and Simulated Annealing
Do this 10 times for each algorithm	
9. Repeat step 8 for 200 clauses and 20 variables, 300 c	
500 clauses and 50 variables, 10 clauses and 10 variabl	
variables, 42 clauses and 10 variables, 127 clauses and	
10. Record data and analyze which algorithm had a hig achieve a solution, and number of clauses satisfied	her performance level in terms of states taken to
Materials	
1 Computer	
Software:	
Microsoft Visual C++ Introductory Edition Compiler Microsoft Word	
Microsoft Excel	
Results	
The Hillclimbing algorithm performed worse, in terms	of the number of clauses satisfied. The Genetic
algorithm performed the worse, in terms of number of s	states taken to find a candidate.
Conclusions/Discussion	1 4
The Simulated Annealing Performed the best out of all	algorithms
Summary Statement	
To find out which out of the three algorithms will solve the Satisfiability Problem most effectively	
Help Received	
I would first like to thank my mentor, Dr. Kibler. I would also like to thank SCAS for their support.	