Project Title

Singing Goblets: Measuring Sound Frequencies from Glass Goblets
Abstract
Objectives/Goals
The objective is to test the hypothesis that greater liquid volumes and thicker liquids make a glass goblet
resonate at a lower frequency. Also, to determine what effect size and/or shape of goblet has on
frequency.
Methods/Materials
I used a KORG Chromatic Tuner CA-30 to measure and record pitches of a small and big glass goblet
filled at different volumes with either water, vegetable oil, or molasses. I repeated all trials. I used the
formula: f(2) = f(1)* $2^{\wedge}(\mathrm{x} / 1200)$, where f(2) represents the sound frequency in Hertz, $\mathrm{f}(1)$ the frequency of
the closest semitone, and x the number of cents (a unit of pitch based on the equal tempered scale) away
from the closest semitone, to convert the recorded pitches to frequencies.
Results
Greater liquid volumes produce lower frequencies than goblets filled with less liquid. Oil produced
higher frequencies than water, molasses lower than water, and the smaller goblet produced frequencies
lower than the larger goblet. Results were very consistent and repeatable.
Conclusions/Discussion
My hypothesis that as more liquid is added the frequency gets lower was correct. The size and/or shape of
the glass also influenced the pitch along with the liquid's density. Liquid volume had a greater effect on
frequency than liquid density, however.

Summary Statement
Sound frequencies from glass goblets vary depending on the volume and type of liquid, and size and/or shape of the glass.

Help Received

My dad helped me make graphs and convert pitches to frequencies.

