

Name(s)

Vinhcent H. Le

Project Number

S0708

Project Title

The Effect of Varying Parabolic Reflectors on the Amplification of the Signal to Noise Ratio of 802.11g Devices

Objectives/Goals

Abstract

To determine the effect if any, varying the width of Linear Locus Parabolic Reflectors have on the amplification of the signal to noise ratio of an 802.11 wireless signal.

Methods/Materials

Materials:

Aluminum Sheet Metal, Ruler, Styrofoam, Electrical Tape, Scissors

Razorblade, Knife, Wireless Router, Wireless Laptop, Netstumbler Wireless Fidelity Tester, Stopwatch, Parabolic Template

Methods:

1.) Using the parabolic template make 3 sizes of reflectors

2.) Using the template cut styrofoam support braces according to template dimensions

3.) Tape the aluminum metal onto sytrofoam support

4.) Attach finished reflectors to a wirelss router

5.) Use netstumbler in order to test signal to noise ratio

Results

Avgs. Group 1 Group 2 Group 3 Group 4 Trial 1 -45.86 -29.71 -29.86 -29.86 Trial 2 -51.71 -30.29 -31.14 -28.43 Trial 3 -50.57 -25.43 -31.43 -35.14

(Units for numbers is db)

Conclusions/Discussion

Upon the completion of this experiment the hypothesis was proven correct. It could be seen that an 802.11g antenna used in conjunction with a 16.5 cm parabolic reflector would boost the signal to noise ratio of a wireless signal the most. Without the use of the parabolic reflectors the signal to noise ratio of the control group averaged about -49.38 dB. The 12.5 cm parabolic reflector group boosted the signal the least with an average SNR reading of -31.14 dB, in comparison the signal to noise ratio of the 14.5 cm parabolic reflectors had an average signal to noise ratio of about -30.81dB. Group 2 which was the 16.5 cm parabolic reflector group boosted the signal to noise ratio by close to 21 dB and had an average signal to noise ratio of -28.48 dB. So the experiment supports the idea that the greater surface area a parabolic reflector has the better it will perform. Group 2 had the largest surface area and performed the best and the

Summary Statement

Finding effect parabolic reflectors have on wireless internet signal quality.

Help Received