

V.	

Name(s)	Project Number	
Chase W. Raymond	C1011	
	51214	
Project Title		
The Origins of Pi		
Objectives/Goals Abstract		
What are some of the different methods for calculating the irrational decim Pi (d)? Is any method more accurate or efficient than others? Methods/Materials Beaker Marble Yarn Graphing Calculator Ruler Toothpicks	al place values of the constant,	
 Procedure: Methods to be Analyzed: Spherical Method Buffon#s Needle Experiment Monte Carlo Method (Quarter Circle) Arctangent Infinite Series Wallis# Formula Newtonian Fluxions 		
Calculate Percentage Error for the different methods and analyze which app Pi (d) most rapidly and accurately. Results	proaches the constant value of	
Wallis# Formula provided the most accurate calculation approaching the value of Pi (d). The real resultant from this data, however, is that no method or number can represent or calculate Pi#s (d) exact value, except Pi (d), itself.		
We, in the real world, must decide the amount of precision we are going to use on a given project (ie: the building of a bridge) in order to accept something as perfect 'enough' to accept its usage.		
Summary Statement		
I looked at different methods of calculating Pi's decimal places and tested v value fastest.	which approached Pi's true	
Help Received		