

CALIFORNIA STATE SCIENCE FAIR 2006 PROJECT SUMMARY

Name(s)

Robert A. Ray

Project Number

S0517

Project Title

The Effect of Temperature on the Affinity of Carbon Dioxide to Molecular Sieve 4A

Abstract

Objectives/Goals

The purpose of my experiment is to find the optimum temperature for absorbing CO2 in molecular sieve 4A.

Methods/Materials

I first heat up my column to the test temperature. Then, I take a sample of 10% CO2 and 90% air with my input gas syringe. I then push this air through my column until there is no space left in the syringe. I simultaneously fill up the output syringe, #syringe 2,# to the same level that syringe 1 was at after filling it with air. I then heat up my oven to the maximum temperature and take a gas chromatograph sample of syringe 2. I then open the valves leading to the peristaltic pump and pump the gas in the column into syringe 3. I then take a sample of this gas and run it three times through my gas chromatograph.

Results

The data for sample 1 showed that the average percent in relation to the amount of air desorbed is 69.7% CO2 at 50°C. The data for sample 2 showed that the average percent of CO2 in the desorbed air is 74.6% CO2 at 100°C. The data for sample 3 showed that the average percent of CO2 in the desorbed air is 62.1% CO2 at 150°C. The data for sample 4 showed that the average percent of CO2 in the desorbed air is 64.4% CO2 at 200°C.

Conclusions/Discussion

I can conclude that the optimum temperature for carbon dioxide absorption into molecular sieve 4A with minimal absorption of air is around 100°C. My Student#s t-Tests show that there is a significant difference between the data of each sample.

Summary Statement

My project is about helping the problem of global warming by filtering CO2 from the atmosphere.

Help Received

My dad supervised my setting up of a high pressure helium system and gas chromatograph use.