

Name(s)

# CALIFORNIA STATE SCIENCE FAIR 2006 PROJECT SUMMARY

**Project Number** 

S1222

Yi Sun

# Project Title On the Expected Winding Number of a Random Walk on the Unit Lattice

# Abstract

**Objectives/Goals** Some recent studies have focused on the winding number of a random walk. Given a random walk s starting at (1,1) on the unit lattice, the winding number w of s is the number of signed complete rotations the walk has made about (1/2,1/2). Despite the known results on the continuous winding number, the discrete version appears to be unstudied. This project investigates the root mean square expectation of the winding number.

## Methods/Materials

We rephrase the problem in terms of a diagonal lattice and determine the winding number as a function of two variables counting steps beginning and ending on the positive x-axis. We then condition on the values of these variables and examine the change in expectation created by each additional step in the walk to express the desired expectation as a summation of only two smaller expectations. A symmetry that yields a bijection between types of these random walks allows us to determine these unknowns and thus reach our final result.

### **Conclusions/Discussion**

We have found an explicit expression for the RMS expected winding number after n steps of a random walk beginning at (1,0) on the unit lattice. This expression is in terms of a binomial sum; we first find the expectation recursively and then exploit a symmetry of random walks to solve the recursion. This result gives us a better understanding of the rotational properties of random walks and thus may be useful in further investigations into this field.

### **Summary Statement**

My project determined the exact value of the expected value of the winding number, the number of rotations that a random walk, or a random path, on the unit lattice makes around a point.

## **Help Received**

Was mentored by Mr. David Pritchard, a graduate student at MIT.