Nehemiah Yap
J0838

Project Title

Solar Revolution: The Conversion of Sunlight into Electricity

Abstract

Objectives/Goals Abstract The objective is to determine if the angle of the sun affects the speed of the solar car. I believe that the higher the angle of the sun is, the faster the speed of the solar car will be.

\section*{Methods/Materials}

The angles of the sun were measured and recorded every hour from 8 a.m. to 12 p.m. Then a solar car was tested and recorded six times every hour from 8 a.m. to $12 \mathrm{p} . \mathrm{m}$. under different angles of the sun at the same start and finish line with a certain distance of twenty feet between.

\section*{Results}

The angles of the sun were $25,35,45,55$, and 65 degrees at 8 a.m., 9 a.m., 10 a.m., 11 a.m., and 12 p.m. The solar car did not moved at 25 degrees, and the average speeds of it were 11.6 seconds at 35 degrees, 9.6 seconds at 45 degrees, 9.1 seconds at 55 degrees, and 8.7 seconds at 65 degrees. The results showed that the speed of the solar car ran faster when the angle of the sun was higher. Conclusions/Discussion My conclusion is that the angle of the sun has an important role in the speed of the solar car: the higher the angle of the sun is, the faster the speed of the solar car will be.

Summary Statement

The higher the angle of the sun is, the faster the speed of the solar car will be.

Help Received

Mother corrected the structure of my writing, held the yard stick when I measured the angles of the sun, released the solar car when I started the stopwatch, held one end of the measuring tape while I measured a distance of 20 feet. Supervised the work of my board.

