

CALIFORNIA STATE SCIENCE FAIR 2009 PROJECT SUMMARY

Name(s) Ryan Bogie; Robert Larsen; Michael Yoshimura	Project Number S0502
Project Title Fuel Go Boom	
Abstract	
Objectives/Goals	
To measure the energy output during the combustion of biodiesel- pet	rodiesel fuel blends
To determine which fuel/fuel blend will optimize energy output	
Methods/Materials	
0.250 L of biodiesel	
0.250 L of commercial-grade petrodiesel	
Benzoic acid tablet	
Iron fuse wire Bomb calorimeter	
XLinx Software	
1)Place sample in crucible	
2)Twist fuse wire onto both ends of calorimeter to allow a current to p	226
3)Place wire so it comes in contact with sample	Jass
4)Assemble calorimeter	
5)Detonate bomb	
6)Record temperature change using software	
7)When temperature graph asymptotes, remove and clean bomb.	
8)Repeat steps 1-7 for other samples.	
Results	
Biodiesel yielded 8556.90 kilocalories per liter of fuel combusted.	
50-50 biodiesel to petrodiesel blend yielded 8415.01 kilocalories per l	iter of fuel combusted.
Petrodiesel yielded 8324.81 kilocalories per liter of fuel combusted.	
Conclusions/Discussion	
The hypothesis of the experiment was correct. As the percentage of bi	
biodiesel-petrodiesel fuel blend, the energy output increased in a some	ternative fuel. In order to better
helps to demonstrate the feasibility of biodiesel as a mass-produced al model this relationship, a greater variety of fuel blends should have be	
accomplished due to time-restraints in the lab. Overall, project was va	
errors caused by uncertainties in lab equipment would only yield a ± 0	
scenario.	
Summary Statement	
This project measured the average energy output during the combustic petrodiesel, and a 50-50 mixture of the two	on of biodiesel, commercial-grade
Help Received	
Used lab equipment at University of California RIverside under the su	
graduate students; Mr. Larsen, father of partner, helped in the construct Ramey helped attain biodiesel sample	ction of the board; Mr. Bernard