

CALIFORNIA STATE SCIENCE FAIR 2013 PROJECT SUMMARY

Project Number

J0906

Name(s)

Noah R. Crousore

Project Title

Arduino-based P.E.A.K Pad for Carpal Tunnel Syndrome

Objectives/Goals

Abstract

Carpal tunnel syndrome (CTS) is a clinical syndrome manifested by characteristics, signs and symptoms resulting from an entrapment neuropathy of the median nerve at the wrist. I wondered if it were possible to design a computer keyboard device that provides both active noninvasive therapeutic and prophylactic benefits for carpal tunnel syndrome. I believed this could be accomplished through Pulsed Electromagnetic Field Therapy (PEMFT), in which noninvasive electromagnetic impulses are applied to the target area, accelerating the natural anti-inflammatory cascade via the binding of calcium and calmodulin, releasing anti-inflammatory nitric oxide. The goal of my project is to see if it is possible to integrate the benefits of PEMFT into a keyboard accessory for carpal tunnel syndrome.

Methods/Materials

I used two 60 cm long wire coils (PEMF applicator), a PEMF portable emitter, an Arduino UNO# Open-source electronics prototyping platform, TRIFIELD Meter Model 100-XE Magnetometer, Tektronix TDS-210 Two-Channel Digital Real-Time Oscilloscope, ADESSO Ergonomic Keyboard Model PCK-208B, SONY KFRP Series Model PCVA-KBP1/UB Standard Keyboard, and a Demarle F11 Silicon Cooking Pad. I measured the vertical and horizontal strength of the electro-magnetic field generated through varying levels of impedance (Z) to ensure that the signal would transmit through the keyboard and pad.

Results

After validating the fundamental carrier frequency of the electromagnetic coils (27.12 MHz), I attempted to find a way to incorporate it into a computer accessory. After many preliminary design schematics, I was able to construct a device such that there was as minimal field mitigation as possible, which emitted a readable electromagnetic field. I then spent hours trying to figure out a powering method. I programmed an Arduino as a power unit that can be plugged into a computer directly, or a wall-mounted power outlet. Also, by using the Arduino unit for power, I was able to modulate therapeutic time intervals easily, making the device customizable for each individual#s therapeutic regimen.

Conclusions/Discussion

I believe I have built an effective PEMF generator and designed it in a way to power it with the computer or with a traditional power outlet. I have tested the EM field that my device is generating at the target anatomy in my wrist, and surrounding my device is a distinct, readable electromagnetic field.

Summary Statement

I designed and built a therapeutic intervention, powered by an Arduino microcontroller that integrates the benefits of Pulsed Electromagnetic Field Therapy for carpal tunnel syndrome.

Help Received

Parents helped collect data; Science teacher lent materials and her guidance; Used lab equipment at Adori Labs under supervision of Mr. Nathan Iyer; Nathan Iyer also gave advice and guidance during the project.