

## CALIFORNIA STATE SCIENCE FAIR 2013 PROJECT SUMMARY

Name(s)

**Eyobed T. Mesfun** 

**Project Number** 

S1725

## **Project Title**

# The Study of the Effects of Electromagnetic Fields at Various Frequencies upon Cancerous and Noncancerous Cells

## **Abstract**

## Objectives/Goals

The objective of this experiment was to see what effects various frequencies of Electromagnetic fields had on the reproductive growth of cancerous and noncancerous cells.

#### Methods/Materials

- 1. Culture the cell lines CCL-107, CCL-219, and CRL-2535 according to ATCC procedures.
- 2. Construct nine electromagnetic field emitting boxes.
- 3. Take your petri dishes place 5 mL of the growth medium with the cells you want to test in each petri dish. Para film the edges to insure no leaks. Place 4 petri dishes in each of the electromagnetic field boxes and 4 controls in the incubator (do this separately for each cell line).
- 4. After 48 hours remove the petri dishes from the aluminum boxes in the incubator, take a 500 microliter sample from each petri dish, place those samples individually in different capsules with a 1:1 volume of Trypan blue staining dye.
- 5. Then pipette 10 microliters and place it in the groves of a hemocytometer and place a glass slide over it and count the number of cells in each of the four 1 square mm corners and divide to get the average.
- 6. Then multiple by 10 to the 5th power to get the approximate cells in the 5 mL petri dish.
- 7. Lastly Run a one way ANOVA test and analyze your data.

#### Results

- # The data I collected regarding electromagnetic field exposure upon Glioblastoma Multiforme (GBM) suggests:
- 1. The P-value, which is 1.06E-16, provides the evidence to reject the null hypothesis which states that EMFs do not affect the growth of GBM.
- # The data I collected regarding electromagnetic field exposure upon Leukemia suggests:
- 1. The P-value, which is .397, leads to the acceptance of the null hypothesis which states that EMFs do not affect the growth of Leukemia.
- # The data I collected regarding electromagnetic field exposure upon healthy glial cells suggests:
- 1. The P-value, which is .015, provides the evidence to reject the null hypothesis which states that EMFs affect healthy glial cells in a harmful manner.

## **Conclusions/Discussion**

Through all the information obtained throughout the course of this experiment I have proven half of my first hypothesis to be correct. GBM when exposed to the various EMF frequencies decreased in cellular reproduction on average by 48.03% amongst all the trials, with P-values supporting these results.

### **Summary Statement**

Low intensity high frequency electromagnetic fields have the ability to disrupt the cellular reproduction of cancer cells.

#### Help Received

Howell Ivy helped me construct my EMF emitting boxes. Valley Christian provided the lab equipment.