

CALIFORNIA STATE SCIENCE FAIR 2013 PROJECT SUMMARY

Name(s)

Amanda M. Shi

Project Number

S1796

Project Title

The Effect of Ammonium on Silver Nanoparticle and Silver Ion Induced Inhibition of Nitrosomonas europaea

Objectives/Goals

Abstract

Silver nanoparticles (Ag-NP) and silver ions (Ag+) have been shown to inhibit the nitrite production of ammonia oxidizing bacteria, a discovery that can affect the efficacy of wastewater treatment plants. The purpose of this study is to analyze the influence of an ion commonly found in wastewater, ammonium (NH4+), on silver nanoparticle and silver ion induced inhibition of the ammonia-oxidizing bacteria N. europaea, and subsequently determine whether Ag-NP or Ag+ more significantly impacts the bacteria's inhibition when in contact with NH4+.

Methods/Materials

Two separate experiments were run to compare the effect of NH4+ on the toxicity of Ag-NP and Ag+ to N. europaea. The first evaluated the change in nitrite production of N. europaea when exposed to a constant concentration of Ag-NP and varying concentrations of NH4+. The second evaluated the change in nitrite production of N. europaea when exposed to a constant concentration of Ag+ and varying concentrations of NH4+. Triplicates of eleven treatment conditions were tested per experiment, with NH4+ concentrations ranging from 0 to 50 mM. Samples of each triplicate were taken every 45 minutes over a 3 hour testing period. The nitrite production of each condition was measured through a colorimetric nitrite assay at an optical density of 540 nm via UV-Visible spectrophotometer.

Recults

As the concentration of NH4+ increased in triplicates containing N. europaea and Ag-NP, nitrite production significantly decreased. Contrastingly, as the concentration of NH4+ increased in triplicates containing N. europaea and Ag+, nitrite production remained fairly constant.

Conclusions/Discussion

These trends suggest that NH4+ attaches to and pulls off the Ag+ that coat the surfaces of Ag-NP to form a silver amine complex, which is just as toxic to N. europaea. Ag+ then quickly regenerate on the surface of the nanoparticle. However, in the second experiment, because there is a limited amount of Ag+ free in solution, even though silver amines form, the overall toxicity remains constant despite varying concentrations of NH4+. This research suggests that Ag-NP would be more toxic in an environment with high concentrations of ammonium rather than in one with low concentrations; it provides a footing for understanding the effects of constituents in wastewater on the toxicity of Ag-NP and Ag+, as well as on the overall efficiency of wastewater treatment plants.

Summary Statement

To analyze the effect of ammonium on silver nanoparticle and silver ion induced inhibition of the ammonia-oxidizing bacteria N. europaea.

Help Received

Mentored by and used lab equipment under the supervision of Dr. Tyler Radniecki, SDSU.