

CALIFORNIA STATE SCIENCE FAIR 2013 PROJECT SUMMARY

Name(s)

Alyssa Buter; Karina Dauven

Project Number

S1905

Project Title Plant Protein: Blue Light vs. Sunlight

Objectives/Goals

Abstract

We observe the effects of different color lighting, specifically blue light, on the protein levels in vegetables. After extracting proteins from the dried, ground leaf samples, I purified the proteins using a column chromatography technique. To determine the concentrations of proteins in each of the fractions, I used a spectrophotometer to measure the optical absorbance at 280nm. The tomato plant exposed to blue light contained more protein in it than the tomato plant exposed to sunlight.

Methods/Materials

I purchased tomato plants and separated them into two different containers. Both groups received equal amounts of water. I left each of these groups in their appropriate light source for about 30 days because I assumed it was enough time for the plants to fully absorb their lightsâ## energy and give accurate results. After 30 days, I picked the leaves from both tomato plant groups. We dryed the leaves so that I could grind them down to powder. Then I took out two mortars and pestles to turn the leaves into powder. Then I put the individual samples into their own microcentrifuge tube. The next step was to add extraction buffer. Then I prepared my vertical gel. With the remaining samples from the tubes I used to collect from the columns, I used the spectrometer to note the absorbance levels of the proteins. I measured the absorbance for all 24 tubes and recorded the results and created a graph.

Results

My results show that the plants exposed to blue light did in fact produce higher levels of protein. I made a vertical gel but there was a significant error. Fortunately the spectrometer was able to verify that there were proteins in those tubes. The first thing I noticed was the color difference; the leaves under blue light had a darker green pigment that the leaves under sunlight. The leaves exposed to blue light had a darker pigment than the leaves that were in sunlight.

Conclusions/Discussion

Overall, this experiment was successful and gave me the results I was looking for. Now that I have learned color alters the natural state of plants, I have become more curious as to what effect blue light will have on red roses for example. I learned that the color of light increases pigment production and that it can help plants to produces higher levels of protein. I conclude that if one wants more protein in their vegetables, they should grow them under blue light.

Summary Statement

The effects of blue light and natural sunlight on plants to see which develops more proteins,

Help Received