CALIFORNIA STATE SCIENCE FAIR 2016 PROJECT SUMMARY Name(s) **Project Number** Caitlin Maya Gorin 36652 **Project Title** Which Type of 3D Printed Plastic Is the Strongest? **Abstract Objectives/Goals** The objective of this experiment is to find out which 3D printed plastic is the st given the variety of plastics available. This is a home designed experiment that focuses on the Tansile Strength of 3D printable materials, leveraging from ASTMs D638 Standard Test Method for Tensile Properties of Plastics. 3D printing has become more available and affordable in the consumer market. It would be advantageous for home users to know which 3D printed plastic it the stronges to they can use it when printing objects. Methods/Materials To conduct this experiment, the Test Equipment had to be first designed and fabricated. The Test Equipment consists of a Frame Assembly, digital hanging scale, Test Block Assembly, Drive Mechanism, and a drill. Ten Test Specimens of each plastic filament (PLA, Polywood, ABS, HIPS, and PET) were 3D printed, for a total of fifty samples. The Test Specimen was then incorporated into the Test Block Assembly and hooked up between the scale and the Dive Mechanism. During each test run, a drill was used to turn the Drive Mechanism and pull each Test Specimen abart, while a video camera recorded the scale display. Load values were extracted from t e video and used to calculate the Tensile Strength of each Test Specimen. **Results** PLA had the highest Average Tensile Strength of 6.9 ksi while PET came in second with 5.3 ksi. Polywood, ABS, and HIPS followed with 3.7 ksi, 3.5 ksi and 2.8 ksi, respectively. PLA had the highest Average Load of 82 lbs. before the samples broke. PET followed closely behind at 80 lbs. Polywood, ABS and HIPS had significantly lower Average Loads at Break. ## **Conclusions/Discussion** The data collected did not support the hypothesis that PET is the strongest 3D printed plastic. PLA was the strongest 3D printed plastic given that it had the highest Average Tensile Strength. This project recommends that home users use PLA filament when printing models that require high Tensile Strength. ## **Summary Statement** Tensile Strength testing of various 3D Printed Plastics to determine which material is the strongest, using a home designed test set up. ## **Help Received** My father taught me how to use the 3D Printer and showed me how to use the power tools to build the Test Equipment.