

CALIFORNIA STATE SCIENCE FAIR 2016 PROJECT SUMMARY

Name(s)

Isha Mehrotra; Rohan Mehrotra

Project Number

S2107

Project Title

Novel Interactions between Parkinson's Risk Genes and a-synuclein Reveal Disease Mechanisms and Pathway-Based Therapies

Objectives/Goals

Abstract

Parkinson's Disease (PD) is characterized by the death of dopaminergic (DA) neurons. The hallmark of PD is toxic aggregates of a-synuclein (a-syn) that induce degeneration of DA neurons. It is unclear how a-syn becomes toxic, which has hindered development of therapies. To elucidate PD, we studied its genetic forms, which provide insight into mechanisms of a-syn toxicity. We identified interactions between PD gene mutations and a-syn in yeast. The goals of our study were to 1) identify mechanisms of a-syn toxicity, and 2) identify potential therapies that target these pathways for treatment.

Methods/Materials

Deletions: We transformed yeast so that each strain contained a-syn and a PD gene deletion. Overexpressions: We transformed yeast so that each strain contained a PD gene overexpression and a-syn. Both: All yeast strains were grown as spotting assays. After growth, each strain was assigned a toxicity score to identify genes that enhanced or suppressed a-syn toxicity.

Results

Enhancers: Genes Swa2 and INP53 enhanced a-syn toxicity when deleted. Suppressors: Genes Sno4 and HSP31 suppressed toxicity when overexpressed.

Conclusions/Discussion

Enhancers: DA neurons fire after using vesicle recycling and ER->Golgi trafficking to transport dopamine. Swa2 and INP53 enable vesicle recycling, and a-syn inhibits ER->Golgi trafficking. Swa2 and INP53 may have enhanced toxicity because both mechanisms of vesicle trafficking were inhibited. Suppressors: Misfolded proteins cause oxidative stress, which damages cells. Neurons use chaperones to ensure proper folding. Sno4 and HSP31 are chaperones, and a-syn induces oxidative stress. Sno4 and HSP31 may have suppressed toxicity because the increased chaperones prevented oxidative stress. Validation of targets: We validated drugs that target these mechanisms. The compound curcumin promotes endocytosis, and nicotinamide prevents oxidative stress. Last year, we found that both compounds decreased toxic a-syn in C. elegans, confirming our results.

- 1) Novel PD mechanisms: i) Impaired vesicle recycling and ER->Golgi transport cause defects in synaptic vesicle trafficking/transmission, and ii) shortage of stress resistance chaperones causes oxidative stress due to misfolded protein accumulation.
- 2) Potential PD therapies: Treatments that i) promote vesicle trafficking, or ii) protect cells from misfolded proteins or oxidative stress.

Summary Statement

This project showed that impaired vesicle trafficking and oxidative stress are two novel mechanisms of a-syn toxicity, and that therapies targeting these mechanisms may effectively treat Parkinson's disease.

Help Received

We would like to thank Noori Chai and Dr. Aaron Gitler for their help and providing yeast strains.