

CALIFORNIA STATE SCIENCE FAIR 2017 PROJECT SUMMARY

Name(s)

Caitlin M. Gorin

Project Number

J1410

Project Title

Developing a Prototype Case that Reduces Electromagnetic Fields Emitted from Cellular Devices

Objectives/Goals

Abstract

The objective of this engineering project is to develop a Prototype Case that reduces H-Field Radiation emitted from Cellular Devices by 10%. Cellular Device usage continues to increase, raising concerns about a possible link between Electromagnetic Field (EMF) Radiation and adverse effects to human health (cancer, sleep disorders, and development problems). It would be beneficial for Cellular Device users to have a protective cover that minimizes H-Fields.

Methods/Materials

This is a 3-Phase Engineering Project that evaluates Cellular Devices' H-Field levels and Materials for filtering Magnetic Radiation using an EMF Tester.

Test Run: Measure H-Field levels from all 6 sides of the Cellular Device, at 3 distances (Direct Contact, 8", and 24" Away) while playing a video or 3 Test Tone Frequencies (200 Hz, 350 Hz, and 500 Hz). Phase-1: Measure H-Fields in the area. Phase-2A: Build a Faraday Cage out of aluminum mesh and wood. Phase-2B: Conduct Test Run on multiple Cellular Devices (iPhone 6S, Samsung S3, Samsung S7, iTouch 4, iPad Mini 4, Tab E 8, Note 10.1, and iPad 1). Select the device with the highest Average H-Field. Phase-2C: Make Screens from different Materials (Plastic, Conductive PLA, Carbon Powder, Iron Filings, Iron Oxide, and Aluminum) and repeat Test Run 3 times with the Selected Device by itself and with each Screen, to identify the Material with the lowest Average H-Field. Phase-3: Design and Fabricate Prototype Case based on Phase 2 Selections. Repeat Test Run 3 times with Selected Device by itself and with the Prototype Case. Analyze H-Field Averages to determine if Objective has been met.

Results

Phase-1: Store Entrances and Electronics Areas have high H-Fields. Phase-2: Highest H-Field - Samsung S7. Due to popularity, iPhone 6S was also tested. Conductive PLA had the lowest Average H-Field, followed by Iron Filings. Phase-3: 3D-Printed Prototype S7 Phone Case using Conductive PLA and then coated it with Iron Filings. Prototype reduced Average H-Fields levels by 15.8%.

Conclusions/Discussion

Prototype met the 10% Reduction Objective with a value of 15.8%. Only partial success can be declared since Direct Contact Front and Back H-Field values exceeded EMF Tester maximum levels (>20 μ T) for all Cellular Devices and were excluded. This project supports using conductive materials Carbon Black (found in Conductive PLA) and Iron Filings to manufacture a case that filters H-Field Radiation.

Summary Statement

Developing Prototype Case made from Materials that reduce potentially harmful Magnetic (H-Field) Radiation emitted by Cellular Devices.

Help Received

My father showed me how to use the tools to build the Faraday Cage and taught me how to use the CAD software so that I could design the Prototype Case.