

CALIFORNIA SCIENCE & ENGINEERING FAIR 2019 PROJECT SUMMARY

Name(s) Project Number

David Heinrichs

J2010

Project Title

Does Limiting Direct Sunlight with Different Types of Shade Materials Make an Air Conditioner Work More Efficiently?

Abstract

Objectives

The objective of my study is to determine if shading can increase the efficiency of an air conditioner.

Methods

Temperature sensors, PVC frame, heat lamps, and various shade materials. I followed a process of repeatedly heating the air conditioner, and then testing its ability to cool. I recorded the temperature changes inside the house from the air intake to the vent and outside between the heat lamps and underneath the shade materials.

Results

Different materials were compared to see if they would increase the efficiency of an air conditioner by providing shade and a lower operating temperature. The performance of the air conditioner showed that the temperature inside the house cooled faster when using shade coverings compared to the control which had no shading. I also found that there were differences in the cooling factors between the types of shade materials used.

Conclusions

I found that reducing the amount of solar rays that hit an air conditioner will make it run more efficiently. Through my repeated tests, I found that thicker materials are more effective in reducing heat transfer to the air conditioner. This insulating characteristic resulted in the cooler working more efficiently.

Summary Statement

I created a shade structure that reduces the amount of sun rays that hit an air conditioner making it run more efficiently.

Help Received

I designed and built both the shade structure and the solar simulator. I received minimal set-up help with heavy material from family members.