Name(s) Gregory A. Hirshman
Project Title The Pleasure of $\mathbf{P i}$

Objectives/Goals

Abstract
The hypothesis of the experiment is that the ratio between the error in determining I using by inscribing polygons within and circumscribing polygons about a circle with (km) sides and that obtained using polygons with (kn) sides will approach $(\mathrm{n} / \mathrm{m})^{\wedge} 2$ as k increases.

Methods/Materials

To test my hypothesis, I needed to develop formulas to determine the perimeters of the regular polygons inscribed within and circumscribed about a circle. I discovered that the perimeter of the regular polygon with X sides inscribed in a circle with a diameter of 1 is $\mathrm{X}(\sin (180 / \mathrm{X}))$. The perimeter of the regular polygon of X sides circumscribed about a circle with a diameter of 1 is $\mathrm{X}(\tan (180 / \mathrm{X})$. I estimated I by using the expression:
$(\mathrm{X}(\sin (180 / \mathrm{X})+\mathrm{X}(\tan (180 / \mathrm{X}))) / 2$, and I calculated the error in estimating pi using polygons with the formula:
error $=((X(\sin (180 / X)+X(\tan (180 / X))) / 2)-I$.
I calculated the ratios of the errors of the estimates using polygons of m and n sides employing six different values for m and $n[(m=8, n=10),(m=6, n=8),(m=4, n=6),(m=4, n=8),(m=4, n=10$,$) and (m=4$, $\mathrm{n}=12$)]. I then calculated the error ratios for polygons of km and kn sides using those given m and n values, and $\mathrm{k}=(1,2,3,4$, and 1000). Finally, I graphed the results.
Results
The graphs are consistent with the hypothesis. As k increases, the error ratio approaches $(\mathrm{n} / \mathrm{m})^{\wedge} 2$, the square of the inverse of the ratio of the number of sides.
Conclusions/Discussion
By completing this experiment, I discovered that the ratio between the error in determining I using by inscribing polygons within and circumscribing polygons about a circle with (km) and (kn) sides approaches $(\mathrm{n} / \mathrm{m})^{\wedge} 2$ as k increases.

Summary Statement

The summary is that I determined that the ratio between the error in estimating pi using by inscribing polygons within and circumscribing polygons about a circle with (km) and (kn) sides approaches $(\mathrm{n} / \mathrm{m})^{\wedge} 2$ as k increases.

Help Received

Dad helped edit my report.

