

CALIFORNIA STATE SCIENCE FAIR 2004 PROJECT SUMMARY

Name(s)

Mathew Lewis; Jeff Tola

Project Number

S0710

Project Title

Capacitance

Abstract

Objectives/Goals

Can we build a capacitor to reflect our expected results of capacitance over theoretical science and mathematics hold true in our experiment?

displacement, and will

Methods/Materials

Procedure: 1. with sheet metal saw, cut a 2, 50 millimeter x 20millimeters; 2. solder wire to plates with soldering iron; 3. glue wooden blocks to sheet plates; 4. set up micrometer stage to move the plates parallel to each other; 5. attach other side of wooden block to micrometer stand; 6. attach wires to the capacitance bridge positive and negative terminals; 7. set up computer to record data on program of choice, exp. Microsoft excel; 8. produce your predicted values; 9. use shim stock to set the constant distance between the plates; 10. set plates so that no area overlaps between the two plates; 11. slowly move the micrometer so that the plates overlap by .5 millimeters and record, repeat until you reach 9 millimeters; 12. Set the plates up so that no area overlaps again; 13. modify capacitance bridge so that the capacitance starts at your predicted value; 14. repeat step 11; 15. while plates overlap by 9 millimeters modify capacitance bridge so that you have your predicted value first; 16. repeat steps 10 and 11; 17. analyze recorded data with mathematical equations.

Materials: 2: 2 millimeter thick metalsheets; 1: sheet metal saw; 1: computer; 1: boonton m7550 capacitance bridge; 5#: Wire; 1#: Solder wire; 1: soldering iron; 1: micrometer stage; 1: Shim stock (.38mm); 2: wooden blocks 15cm x 4cm; 1: bottle of glue.

Results

The First statistical tests that we conducted were t* tests. These tests indicate to us whether or not our data was In a sufficient confidence level . Unfortunately our test yielded unsatisfactory results. The first test had a t* of .127391, which gives an approximate confidence level of 20%, way below our wanted 90%. Our second test had t* of .476496, which gave a confidence level of approximatly40%. Our third test had a t* of .096199 which has a confidence level of approximately 15%.

Conclusions/Discussion

These three tests did not support our original hypothesis, however, they have allowed us to identify key problems that may have contributed to our large amount of error.

Summary Statement

To test theoretical equations in real life situations, in our case we tested capacitance.

Help Received

Father helped take results and set up equipment, Mr. Levy help us organize our project and gave insitful critisim before each fair, Mr. Easton helped with statistics