

CALIFORNIA STATE SCIENCE FAIR 2014 PROJECT SUMMARY

Name(s)
Namrata R. Balasingam

Project Number

34771

Project Title

A Kinetic Monte Carlo Study of the Scalability and Variability of the Forming Voltage of Transition Metal Oxide ReRAMs

Abstract

Objectives/Goals

Resistive random access memories (ReRAMs) are currently under intense investigation because they are promising alternatives to flash-based non-volatile memories, which are not expected to scale to dimensions below about 20nm. "Forming" is a relatively high-voltage process that is used just after manufacturing to functionalize the ReRAM device, by creating a sunductive filament whose resistance is then modulated to encode "0" or "1" memory states. Since forming is a one-time process and since the underlying physics is stochastic in nature, statistically meaningful experimental characterizations of the forming voltage (V_f) are difficult to perform. I have addressed this problem using a novel simulator that I developed. Even though forming is a one-time process, it is important to maracterize it because it determines the overall scalability of this emerging technology.

Methods/Materials

My simulator captures one of the unique aspects of RekAMs: mixed onic and electronic transport. I treat the electronic effects--both current flow and temperature rise due to foule heating--using equivalent resistor networks, and oxygen vacancy generation and ion migration using kMC. The distribution of vacancies determines the linear/nonlinear elements of the resistor network, and the heat generated by electron flow in this network in turn determines the vacancy ion generation rates that drive kMC. The strong coupling between electronic, hermal and ionic effects allows my simulator to closely reproduce the experimentally observed rapid increases in current at the V_f threshold.

Results

I characterized the forming voltage and its statistical variability as device dimensions and forming conditions were varied: (1) V_I vs thickness, (2) V_f vs. width, (3) V_f vs. maximum allowed current at forming, (4) V_f vs. temperature and (5) V_f vs. voltage ramp rate.

Conclusions/Discussion

I found that the critical voltage at which the flament forms depends linearly on thickness and roughly logarithmically on width. I motivate the thickness dependence using an effective field argument, and then offer a plausible statistical argument to explain the width dependence. I also found that forming at an elevated temperature can both reduce the average V_f, as well as the variability in V_f.

Summary Statement

I developed a novel kinetic Monte Carlo (kMC) simulator that possesses physics-based realism as well as speed, and used it to investigate the forming process in ReRAMs, and project V_f trends in deeply scaled (~10nm) memory cells

Help Received

I would like to thank my advisors Dr. Dipu Pramanik, Mr. William Abb and Mr. Ronald Nicoletti for their valuable guidance throughout the course of my work.