

CALIFORNIA STATE SCIENCE FAIR 2016 PROJECT SUMMARY

Name(s)	Project Number
Mihika Nadig	
	36466
Project Title	00+00
Application of a Deep Learning Architecture Using Convolutional and	
Recurrent LSTM Networks to Video Classification	
6	$ \times \times 7 $
Abstract	
Objectives/Goals	
Currently, the use of neural networks has been restricted to image classification	. Video classification has
been a challenge due to the difficulty of fusing spatial-temporal information. M	y project aims to construct
a deep learning architecture involving convolutional neural networks (CNN) a	nd recurrent neural
networks (RNNs) with LSTMs as a viable solution for video classification.	\mathcal{A}
Methods/Materials	
10 perform feature computation, two CININS are used to process raw notification images from the LICE 101 Video, CIEAD 10, and Microsoft COCO Departs	frames and optical flow
inages from the UCF-101 video, CIFAR-10, and Microsoft CCO Dansels. A	tacture. Three feature
pooling architectures were experimented with: Conv Pooling Information	ling and Neighborhood
Pooling A softmax classifier the final layer in the feature pooling architecture	returns the prediction
Training is done by coupling stochastic gradient with pompating at 99 for opt	imization processes, and
weight decay of 0.0005 was used with a learning rate of N frames ∗: 108	k#8722;5. The LSTM
Architecture provides output by returning the prediction at the last time step.	, , , , , , , , , , , , , , , , , , ,
Results	
Conv Pooling had the best results at 89.6% when using the three datasets. Comp	paring the Conv Pooling
with the deep RNN using LSTMs, the second leaver aggregation method, LSTMs outperformed Conv	
Pooling at 90.5%. These are comparable results for modern usage and demonstrate that identifying long	
Conclusions/Discussion	
Conclusions/Discussion Lyong able to surpass the headback of 0% by our 65% instead of using the ne	ive method of performing
3D convolutions over each single frame Because Only Pooling was optimal it was concluded that	
max-pooling over the outputs of the final convolutional layer is important. It is clear that LSTMs	
performed better due to its ability to identity and range temporal relationships.	By coupling optical flow
and raw image (300 frames/video) as input I improved previous work that only	sampled 60-120 frames.
	1
Summary Statement	
I created a deep learning architecture coupling CNNs and RNNs with LSTMs to	o aid in the problem of
video classification which can be extended to applications ranging from military assistance to	
navigational technology for the blind.	
Heln Received	
I would like to thank my dad for providing support and resources for my project	
i would like to thank my dad for providing support and resources for my project.	