

CALIFORNIA STATE SCIENCE FAIR 2016 PROJECT SUMMARY

Name(s)	Project Number
Shomil Jain	
Project Title	36561
Developing an Artificial Turf Field with Thermoelectric Generators for	
Heat Absorption and Electricity Generation	
6	\sim
Objectives/Goals Abstract	
Extreme heat in artificial turf has been well documented. The purpose of this pu	et to cool the surface
of the turf while generating electrical energy. An artificial turf field prototype v	
thermoelectric generators to transfer heat from the surface layer of the tarf to the	e base layer and convert
the heat to electricity.	∽ ·
Methods/Materials	
A wooden container (46 cm x 60 cm x 10 cm) was filled with potting soil a ca	rdboard frame with 16
evenly spaced thermoelectric generators (TEGs), thermal grease, the artificial the	urf mat, and black crumb
rubber infill. The TEGs were connected in four parallel circuits of four generated drilled into one side of the box at multiple heights to allow for an accurate measurement.	ors in each. Holes were
quantities at each layer of the turf structure. A heat lamp was placed 10 cm abo	ve the turf box to simulate
a daytime environment. Trials consisted of activating the heat lamp and recordi	ng measurements of
electricity and temperature. Trials were conducted at angths of 40, 60, 90, and	360 minute intervals.
Open-circuit voltage was measured using a multimeter. Remperature gradients	at 5 different levels was
measured using digital thermometers.	
Results	
The maximum temperature gradient and electricity generation was 11.1°C and 25.8 mV, respectively. Six rounds of a 150 minute testing period resulted in a consistent direct relationship between the temperature	
rounds of a 150 minute testing period resulted in a consistent direct relationship between the temperature gradient and electricity generated. A statistical test of correlation found a strong correlation between the	
gradient and electricity generated. A statistical test of correlation found a strong correlation between the two data sets with an average R/Vane of 0.9623. The correlation between heat and electricity proved that	
the generators were working as expected	
Conclusions/Discussion	
Extrapolation of the data from the prototype to a full scale artificial turf field of 90 m x 120 m resulted in	
an electrical output of 1.5 MW. This amount of electricity would be enough to power the majority of an	
artificial turf stadium's power needs including a scoreboard or LED floodlights, for an extended period of	
time. In a residential application, an artificial turf lawn would be able to produce enough electricity (60	
kW) to power the average American home. In addition, an artificial turf field with thermoelectric generators would also be capable of producing electricity in the night, due to a temperature difference	
between the surface layer of turf (cold side), and the base layer (warm side).	temperature unterence
between the surface hayer of this (condiside), and the base hayer (warm side).	
Summary Statement	
I developed a prototype of an artificial turf field that utilized thermoelectric gen	herators to absorb heat from
the surface layer of the field and convert the heat to electricity.	
Help Received	
My science teacher, Cathy Messenger, helped me procure the required materials, and Brian Messenger, an	
electrical engineer, helped me verify my electrical data and calculations.	