
CALIFORNIA STATE SCIENCE FAIR
2016 PROJECT SUMMARY

Ap2/16

Name(s) Project Number

Project Title

Abstract

Summary Statement

Help Received

Kevin K. Pho

Digital Fingerprints: Constructing One-Way Hash Functions

S1418

Objectives/Goals
The objective of this experiment is to test numerous designs (based on mathematical problems and basic
operations) to aid in the construction of faster and more secure hash algorithms. The designs were
evaluated by speed and the lack of collisions, which occur when two inputs share the same output. The
construction of more efficient hash algorithms provide security of passwords, integrity of files, et cetera
by preventing inversion of the function and the discovery of a collision.

Methods/Materials
A laptop computer with the Python interpreter was used to design and test the algorithms. The computer
and interpreter provided the timer for testing speed. The algorithms were tested on a sample word list of
common passwords (to demonstrate applicability). Some of the algorithms were derived from source code
or programming libraries, such as hashlib (Python).

Results
The data indicates that primitive operations performed quickly, clocking in at under a second. They
provided many collisions (most yielded more than 500). The fastest operations included addition, XOR,
and bit-shifting while the most secure included bit-shifting, addition, modulus, and subtracting. On the
other hand, the investigated mathematical constructs that were the fastest included SHA-3, MD5, the
position-based design, the addition construct, and the linear congruential generator while those that
provided the most resistance to collisions included SHA-3, MD5, the sum of three cubes design, the linear
shift feedback register, and the discrete logarithm problem design.

Conclusions/Discussion
The speed of primitive operations allows hash algorithms to quickly perform operations on the bits in
order to "mix" them. Although the quantity of these operations affects the speed of the algorithm, the
security of these do not create most of the security of the algorithm; the mathematical constructs do. The
constructs are the steps that properly transform/diffuse the bits, so that the output provides a seemingly
random output. Furthermore, if the constructs are based on computational hardness assumptions, they can
be further proven to be secure as an input must be impossible to retrieve from its output. This information
encourages the construction of hash algorithms with NP problems (problems known to be hard to solve in
polynomial time), and it can aid in the construction of future hash algorithms to further enhance
cryptographic security.

A hash function is most effective (measured by speed and lack of collisions) when simple mathematical
problems, such as the discrete logaritihm problem, are used in junction with primitive operations, such as
addition and XOR.

I designed and programmed the hash algorithm and evaluating tests and analyzed the data myself. Some
of the algorithm designs were based on pre-existing ones, such as MD5, SHA-3, and Adi Shamir's
Discrete Logarithm Hash Function.


	S1418

