

## CALIFORNIA SCIENCE & ENGINEERING FAIR 2019 PROJECT SUMMARY

Name(s) Project Number

Affan Mala

J1020

## **Project Title**

# LiFi, A Bright Idea: Using Sound Output to Analyze the Effect of Distance on Data Transmission through Light Waves

## **Abstract**

## **Objectives**

Using sound output to analyze the effect of distance on data transmission through light waves.

#### Methods

To do this, I first made a Li-Fi model (Li-Fi is a wireless optical networking technology that uses LEDs for data transmission.) imitating real Li-Fi concepts which consist of a transmitter and a receiver. The transmitter in my model includes an LED, a resistor, wires, a 9v battery, and a phone. The receiver includes a solar panel, a PAM 8403 amplifier and a speaker. I then used a ruler to measure 25.4cm, 91.44cm, 182.88cm, 985.36cm. then I measured how many lux were hitting the solar panel, the sound produced in decibels and the width of the light beam from each distance.

#### Results

As we increased the distance between the transmitter and receiver, signals started to weaken. However, I could still get strong signals by using a small 10mm LED to transmit signals to distances of up to 985.36cm and still be able to receive sound up to 55 Db.

### **Conclusions**

I used a small circuit and 10mm LED and I was able to transmit audio to as far as 975.36 cm (10.6 yards). Imagine how good Li-Fi would work if it were outfitted in LEDs in our homes. Imagine networking speeds of 224 Gbps. If I were to have the facility and the equipment, I would have done my project on a grander level by transmitting video and recording the (DTR).

## **Summary Statement**

I measured the efficiency of data transmission through light waves by transmitting data from various distances to see how far I can transmit via a 10 mm led and recorded the output in decibels

## **Help Received**

This project was done entirely by myself and was based on research I performed. All the experiments, research were performed by myself without any help.